PHASE-UP (Preschool Hearing and Speech Education - University of Pittsburgh): **Comparison of Preschool Hearing Screening Protocols**

Nicole E. Corbin Au.D., Ph.D., CCC-A, Katie Vellody MA, CCC-A, Elizabeth Larget, Emily Miller, & Xin Zhuang

University of Pittsburgh, School of Health & Rehabilitation Sciences, Department of Communication Science & Disorders

Introduction

Universal newborn hearing screening (UNHS) has drastical reduced the age at which children are diagnosed with congenit hearing loss.

UNHS does not guarantee early identification and intervention infants who have mild (i.e., 20-40 dB HL), late-onset, progressiv or fluctuating hearing loss. Also, there will always be a proportion of infants who are lost to follow-up and/or documentation aft UNHS. As a result, the prevalence of hearing loss among childre increases from 1-3 per 1,000 at birth to 9-10 per 1,000 at schoo age. Universal preschool hearing screening programs cou promote early identification and intervention for these children.

Clinical practice guidelines recommend the use of pure-tor audiometry along with tympanometry and/or otoscopy to scree hearing in the preschool population. However, the use of pur tone audiometry in this population presents many challenges.

Otoacoustic emissions (OAEs) offer many advantages over puretone audiometry for preschool hearing screening. However, the sensitivity and specificity of OAEs when applied to hearing screening has been problematic (e.g., high false-negative rate). As a result, OAEs as a standalone measure have not been widely used to screen hearing in the preschool population.

The sensitivity and specificity of OAEs can be enhanced by using two pass-fail criterion (Hall 2016). These criterion are (1) distortion-product OAE (DPOAE) amplitude greater than 6 dB SPL above the noise floor (e.g., DPOAE-to-noise ratio) >6 dB, and (2) DPOAE amplitude ≥ 0 dB SPL.

The goal of this study is to determine the extent to which a twocriteria as opposed to one-criterion DPOAE pass-fail protocol would result in more effective hearing screening practices in the preschool population.

This poster presents results from preliminary data analyses.

Methods

This study involves a retrospective chart review of hear screening results obtained from children seen in the Presch Hearing and Speech Education – University of Pittsburgh (PHAS UP) clinic from September 2018 to December 2018.

Inclusion criteria:

- Child age: 3 6 years
- Complete hearing screening battery
- Consent form on file

The hearing screening results came from a battery of the separate measures:

- Tympanometry and/or otoscopy
- DPOAEs at 2 4 kHz
- Pure-tone audiometry at 1, 2, and 4 kHz

Methods

The pass criteria for each screening measure are detail	
Test	Criteria
Tympanometry and/or otoscopy	 Pass Tympanometric wid Patent pressure eq Normal tympanic m
DPOAEs at 2 – 5 kHz	 One-criterion DPOAE DPOAEs are pressional assessed Two-criterion DPOAE DPOAEs are pressional assessed, and DPOAE absolute a
Pure-tone audiometry at 1, 2, and 4 kHz	Pass Response obtained

Preliminary Results

A total of 297 children were included in the analyses. The charts of 11 children contained incomplete DPOAE data. As a result, the two-criteria DPOAE pass rate includes data from only 286 children.

What is the overall pass-fail rate for the typical, one-criterion DPOAE screening protocol?

Age (years)	# Passed / Total	Pass rate (%)
3	93 / 105	89
4	156 / 170	92
5	20 / 21	95
6	1 / 1	100
Total	270 / 297	91

		FREQ	Procedure		
ring	-	Table of typ	oical by str	icter	
nool			S	stricter	
SE-		typical	Pass	Refer	Total
	Frequency		237	23	260
	Percent		82.87	8.04	90.91
	Row Pct		91.15	8.85	
	Col Pct	Pass	100	46.94	
			0	26	26
			0	9.09	9.09
			0	100	
nree		Refer	0	53.06	
			237	49	286
		Total	82.87	17.13	100
		Freq	uency Mis	sing = 1 ²	

led in the table below.

dth (TW) ≤250 daPa, or jualization (PE) tube, or nembrane visualized on otoscopy

protocol

sent at a SNR of ≥ 6 dB at 3 out of the 4 frequencies

protocol ent at a SNR of ≥ 6 dB at 3 out of the 4 frequencies

amplitude ≥ 0 dB SPL at those frequencies

d at 20 dB HL at all frequencies assessed

2. What is the overall pa	ass-fail rate for the stricter
two-criteria DPOAE	E screening protocol?

Age (years)	# Passed / Total	Pass rate (%)
3	77 / 102	75
4	142 / 164	87
5	18 / 20	90
6	- / -	-
Total	237 / 286	83

3. How do the typical and stricter DPOAE screening protocols compare?

Fisher's Exact Test

Cell (1,1) Frequency (F)	237
Left-sided Pr ≤ F	1
Right-sided Pr ≥ F	<.0001
Table Probability (P)	<.0001
Two-sided Pr ≤ P	<.0001

Sample size = 286Frequency missing = 11

Analyses are underway on the present dataset to answer additional research questions, such as:

	A
	SC
2.	W
	a
3.	A
	р
	SC
1.	W
	ea
	рг
	re
	m
5.	D
	ра
	S

soon.

00199/

The PHASE UP program would not be possible without the continued support and partnership between the University of Pittsburgh Department of Communication Science & Disorders and the many preschools and schools throughout the Pittsburgh community. We are also grateful for the many AuD and SLP graduate students that have given their time and skills to provide evidenced-based hearing, speech, and language screenings to more than 15,000 preschoolers in our community.

Preliminary Results

- **One-criterion DPOAE screening protocol**
- Total pass rate: 91%.
- Range in pass rate: 89-100%
- **Two-criterion DPOAE screening protocol**
- Total pass rate: 83%.
- Range in pass rate: 75-90%

Future Directions

- Are outcome data from one-criterion versus two-criterion DPOAE creening protocol significantly different or related?
- Vhat is the pass/fail rate for pure tone audiometric screening protocol nd tympanometry/otoscopy screening protocol?
- Are the pass/fail rates between pure tone audiometric screening protocol, one-criterion DPOAE screening protocol & two-criterion creening protocol, significantly related?
- Vhat is the percentage of children who passed the screening in both ears on all 3 screening measures? How many were referred to rimary care physician (PCP) in one or both ears? How many were eferred for a full hearing evaluation (audio) in one or both ears? How nany were referred for both a PCP consult & audio?
- Does a statistical relationship exist between age at screening & bass/fail rate on pure tone audiometric screening, typical DPOAE creening protocol or stricter DPOAE screening protocol?
- PHASE-UP charts from January 2019 March 2020 are currently being reviewed for inclusion in these analyses.

We hope to submit the comprehensive findings for peer-review publication

References

- American Speech-Language-Hearing Association. (1997). Guidelines for Audiologic Screening. Retrieved from http://www.asha.org/policy/GL1997-
- American Academy of Audiology Task Force. (2011). Childhood Hearing Screening Guidelines. Retrieved from
- http://www.audiology.org/publications-resources/documentlibrary/pediatric-diagnostics
- Year 2019 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs (2019). Journal of Early Hearing Detection and Intervention, 4(2), 1-44. <u>https://doi.org/10.15142/fptk-b748</u> Hall, J. W. (2016). Effective And Efficient Pre-School Hearing Screening: Essential For Successful EHDI. Journal of Early Hearing Detection and Intervention, 1(1), 2-12. DOI: <u>https://doi.org/10.15142/T3XW2F</u>

Acknowledgements